标签归档:ggfortify

一行R代码来实现繁琐的可视化

本文作者: 唐源,目前就职于芝加哥一家创业公司,曾参与和创作过多个被广泛使用的 R 和 Python 开源项目,是 ggfortify,lfda,metric-learn 等包的作者,也是 xgboost,caret,pandas 等包的贡献者。(喜欢爬山和烧烤

ggfortify 是一个简单易用的R软件包,它可以仅仅使用一行代码来对许多受欢迎的R软件包结果进行二维可视化,这让统计学家以及数据科学家省去了许多繁琐和重复的过程,不用对结果进行任何处理就能以 ggplot 的风格画出好看的图,大大地提高了工作的效率。

ggfortify 已经可以在 CRAN 上下载得到,但是由于最近很多的功能都还在快速增加,因此还是推荐大家从 Github 上下载和安装。

library(devtools)
install_github('sinhrks/ggfortify')
library(ggfortify)

接下来我将简单介绍一下怎么用 ggplot2ggfortify 来很快地对PCA、聚类以及LFDA的结果进行可视化,然后将简单介绍用 ggfortify 来对时间序列进行快速可视化的方法。

PCA (主成分分析)

ggfortify 使 ggplot2 知道怎么诠释PCA对象。加载好 ggfortify 包之后, 你可以对stats::prcompstats::princomp 对象使用 ggplot2::autoplot

library(ggfortify)
df <- iris[c(1, 2, 3, 4)]
autoplot(prcomp(df))

ggfortify-unnamed-chunk-1-1你还可以选择数据中的一列来给画出的点按类别自动分颜色。输入help(autoplot.prcomp) 可以了解到更多的其他选择。

autoplot(prcomp(df), data = iris, colour = 'Species')

ggfortify-unnamed-chunk-2-1比如说给定label = TRUE 可以给每个点加上标识(以rownames为标准),也可以调整标识的大小。

autoplot(prcomp(df), data = iris, colour = 'Species', label = TRUE,
         label.size = 3)

ggfortify-unnamed-chunk-3-1给定 shape = FALSE 可以让所有的点消失,只留下标识,这样可以让图更清晰,辨识度更大。

autoplot(prcomp(df), data = iris, colour = 'Species', shape = FALSE,
         label.size = 3)

ggfortify-unnamed-chunk-4-1

继续阅读一行R代码来实现繁琐的可视化