标签归档:Dirichlet分布

嘿,朋友,抢红包了吗?

如果你有一台智能手机,如果你装了一个名叫微信的软件,那么你今年的春节很可能是在下面这样的场景中度过的(图片来自微信群):

lucky_money_3 lucky_money_2 lucky_money_1

这也使得众多的网络大V发出了下面的感慨:

lucky_money_4

而最近几天不少微信群里面又流行起来一种“红包接力”的玩法,大概的规则是:群里面先由一人发一个红包,然后大家开始抢,其中金额最大的那个人继续发新一轮的红包,之后不断往复循环。

这时候大家或许就会问了,一直这么玩下去会有什么结果呢?是“闷声赚大钱”了,还是“错过几个亿”了?是最终实现“共同富裕”了,还是变成“寡头垄断”了?要回答这些问题,我们不妨用统计模拟的方法来做一些随机实验,得到的结果或许会让你大跌眼镜呢。

继续阅读嘿,朋友,抢红包了吗?

LDA-math-认识Beta/Dirichlet分布

2. 认识Beta/Dirichlet分布
2.1 魔鬼的游戏—认识Beta 分布

统计学就是猜测上帝的游戏,当然我们不总是有机会猜测上帝,运气不好的时候就得揣度魔鬼的心思。有一天你被魔鬼撒旦抓走了,撒旦说:“你们人类很聪明,而我是很仁慈的,和你玩一个游戏,赢了就可以走,否则把灵魂出卖给我。游戏的规则很简单,我有一个魔盒,上面有一个按钮,你每按一下按钮,就均匀的输出一个[0,1]之间的随机数,我现在按10下,我手上有10个数,你猜第7大的数是什么,偏离不超过0.01就算对。”你应该怎么猜呢?

从数学的角度抽象一下,上面这个游戏其实是在说随机变量$X_1,X_2,\cdots,X_n {\stackrel{\mathrm{iid}}{\sim}} Uniform(0,1)$,把这$n$ 个随机变量排序后得到顺序统计量 $X_{(1)},X_{(2)},\cdots, X_{(n)}$, 然后问 $X_{(k)}$ 的分布是什么。 继续阅读LDA-math-认识Beta/Dirichlet分布