标签归档:倾向得分

因果推断简介之四:观察性研究,可忽略性和倾向得分

这节采用和前面相同的记号。$Z$ 表示处理变量($1$ 是处理,$0$ 是对照),$Y$ 表示结果,$X$ 表示处理前的协变量。在完全随机化试验中,可忽略性 $Z \bot \{Y(1), Y(0)\} $ 成立,这保证了平均因果作用 $ACE(Z\rightarrow Y) = E\{Y(1) – Y(0)\} = E\{Y\mid Z=1\} – E\{Y\mid Z=0\}$ 可以表示成观测数据的函数,因此可以识别。在某些试验中,我们“先验的”知道某些变量与结果强相关,因此要在试验中控制他们,以减少试验的方差。在一般的有区组(blocking)的随机化试验中,更一般的可忽略性 $Z \bot \{Y(1), Y(0)\} | X$ 成立,因为只有在给定协变量 $ X $ 后,处理的分配机制才是完全随机化的。比如,男性和女性中,接受处理的比例不同,但是这个比例是事先给定的。

在传统的农业和工业试验中,由于随机化,可忽略性一般是能够得到保证的;因此在这些领域谈论因果推断是没有太大问题的。Jerzy Neyman 最早的博士论文,就研究的是农业试验。但是,这篇写于 1923 年的重要统计学文章,迟迟没有得到统计学界的重视,也没有人将相关方法用到社会科学的研究中。1970 年代,Donald Rubin 访问 UC Berkeley 统计系,已退休的 Jerzy Neyman 曾问起:为什么没有人将潜在结果的记号用到试验设计之外?正如 Jerzy Neyman 本人所说 “without randomization an experiment has little value irrespective of the subsequent treatment(没有随机化的试验价值很小)”,人们对于观察性研究中的因果推断总是抱着强烈的怀疑态度。我们经常听到这样的声音:统计就不是用来研究因果关系的!

在第一讲 Yule-Simpson 悖论的评论中,有人提到了哲学(史)上的休谟问题(我的转述):人类是否能从有限的经验中得到因果律?这的确是一个问题,这个问题最后促使德国哲学家康德为调和英国经验派(休谟)和大陆理性派(莱布尼兹-沃尔夫)而写了巨著《纯粹理性批判》。其实,如果一个人是绝对的怀疑论者(如休谟),他可能怀疑一切,甚至包括因果律,所以,康德的理论也不能完全“解决”休谟问题。怀疑论者是无法反驳的,他们的问题也是无法回答的。他们存在的价值是为现行一切理论起到警示作用。一般来说,统计学家不会从过度哲学的角度谈论问题。从前面的说明中可以看出,统计中所谓的“因果”是“某种”意义的“因果”,即统计学只讨论“原因的结果”,而不讨论“结果的原因”。前者是可以用数据证明或者证伪的;后者是属于科学研究所探索的。用科学哲学家卡尔·波普的话来说,科学知识的积累是“猜想与反驳”的过程:“猜想”结果的原因,再“证伪”原因的结果;如此循环即科学。

继续阅读因果推断简介之四:观察性研究,可忽略性和倾向得分